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Blebbingoccurs when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven
flow of cytosol towards the area of detachment and the local expansion of the cell membrane. Recent
interest has focused on cells that use blebbing for migrating through 3D fibrous matrices. In particular,
metastatic cancer cells have been shown to use blebs for motility. A dynamic computational model of
the cell is presented that includes mechanics of and the interactions between the intracellular fluid, the
actin cortex and the cell membrane. The computational model is used to explore the relative roles in
bleb formation time of cytoplasmic viscosity and drag between the cortex and the cytosol. A regime of
values for the drag coefficient and cytoplasmic viscosity values that match bleb formation timescales is
presented. The model results are then used to predict the Darcy permeability and the volume fraction of
the cortex.

Keywords blebbing; cell cortex; cell mechanics; intracellular fluid flow; immersed boundary method;
porous media.

1. Introduction

In animal cells, the cell cortex is an actin-rich layer attached to the memb#diberis et al., 2002).
Myosin molecular motors pull on neighbouring actin filaments to generate cortical tension. Because of o
this tension, the cell is pressurized. If either the attachments between the membrane and cortex are bro=
ken, or the cortex is ablated, cytoplasm flows into the site of detachment or ablation and the membraneg.
expands Charras & Paluch2008). The resulting membrane protrusion is called a bleb, and the pro- g
cess is referred to as blebbing. Eventually, the cortex reforms and the bleb retracts. Blebbing has beerﬁ-
observed in many cellular processes such as apoptosis @#lglls, 1998), cytokinesisKishkindet al.,
1991), cell spreadingHrickson & Trinkaus,1976) and motility Fackler & Grosse2008). In particular,
blebbing has been observed in migrating cancer cells when extracellular matrix degrading proteins are
inhibited Wolf et al.,2003). 3

Little is known about control mechanisms of bleb growth. It has been hypothesized that cytoplasmic
rheology, membrane tension and cortical reformation are involved in bleb forma&imerraset al.,
2008;Tinevezet al.,2009). The interactions and exact roles of these components are unclear. Mathe-
matical modelling can be used as a tool to elucidate the interplay and function of these components.
Additionally, the cytoplasm has been hypothesized to be elastic, poroelastic and fluid. Different cyto-
plasmic models will affect pressure propagation and bleb dynamics in the cell. A mathematical model
can shed light on cytoplasmic properties by looking at bleb formation time as a function of model
parameters such as cytoplasmic viscosity.

Bleb modelling has addressed the case when the cell is in equilib8heefzt al.,2006; Tinevez
et al, 2009). For example, iffinevezet al. (2009), Laplace’s law was used to investigate maximum

eD 1o AiseAlun e /HIo'sfeulno pio o quiwiew//:dny wouy pepeojumoq

dy uo

L

|

€102

© TheAuthor 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.


http://imammb.oxfordjournals.org/

20f16 W. STRYCHALSKI AND R. D. GUY

bleb size as a function of cortical tension. 1D scaling arguments are used to motivate a poroelastic
model of the cytoplasm ilCharraset al. (2008). An energy minimization argument 8heetzet al.

(2006) predicts a critical hole radius for bleb nucleation. Computational models have only recently been
developedYoung & Mitran, 2010).

Dynamic models that also take into account cellular morphology are necessary for understanding
how cells migrate in 3D fibrous matrices. As a first step towards this goal, we present a computational
model of bleb formation that includes the cytoplasm, cell membrane, actin cortex and adhesion between
the membrane and cortex. The cytoplasm is modelled as a Newtonian fluid. The cell membrane and
cortex are modelled by elastic solids. Moreover, the cortex is treated as a permeable membrane that
experiences drag as it moves through the cytoplasm. We use the framework of the immersed boundary
method to simulate our model. Our computational model is then used to investigate the effects of cyto-
plasmic viscosity and cortical drag on bleb formation time. We then estimate cortical permeability and
volume fraction.

The rest of the paper is organized as follows. In SeQiome describe the model system and govern-
ing equations. The numerical algorithm used to simulate the model equations is described inEection
In Sectiond, we explain the initialization of the computation and quantify the effects of membrane and
cortical elastic parameters on bleb shape and size. We then utilize our computational model to explore
the relationship between cytoplasmic viscosity and cortical drag and present the results.

2. Mathematical formulation

Our model of the cell includes a bilipid membrane and actin-rich cortex immersed in a fluid. The mem-
brane and cortex are linked to each other, mimicking adhesion1}ig.

The cell membrane and cortex are modelled by active elastic structures. Forces arising from these
structures drive fluid motion. The cell membrane moves with the fluid velocity, satisfying a no-slip
condition. Because of the small length scales in the system, the Reynolds number is small, and the fluid
equations are given by Stokes flow,

(AU —Vp+ fy + fap + fp =0,
V.i=0 1)

Extracellular Fluid

FiG. 1. Model Components. Adhesion links the discretized cafiexboxes) to the discretized cell membrafig (filled circles).
Cytoplasmic fluid is located in the interior of the cell.
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The variabled is the fluid velocity (um/s), p is the pressure (gn &%) and x is the dynamic viscos-
ity of the fluid (P). The external fluid force densmes,/(gﬁ s°) arise from membrane elast|C|fy,|
membrane-eortex adhesmn‘AD andcortical drang

The cortical velocity is determined by an additional balance of forces on the cortex. Myosin
motors within the cortex generate active contractile tension. The other forces arise from adhesion to
the membrane and drag from the background fluid. Because the cortex is modelled as a permeable elas-
tic membrane, it moves with a velocity separate from the fluid velocity, which is determined by the force
balance equation

FS + FS + F = 0. ) g

>

Eachterm has units of force per unit area/ﬁgrl s72). The exact forms of each surface force density g
are provided later. Cortical forces are communicated to the fluid through drag and membrane—cortex &
adhesion forces. g
The structures are represented by continuous 1D cufye@nembraneand /¢ (cortex) immersed Z

in a 2D fluid domain. Each curve is parameterized by reference arc lengtid their position is de- 2
noted beM (s,t) (membrane)r Xc(s t) (cortex). We employ the immersed boundary formulation g
where structures are represented in a moving Lagrangian coordinate system, while fluid variables are3

located on a fixed Eulerian coordinate systétagkin,1977). We use this formulation because a mov-
ing Lagrangian coordinate system is a natural choice for representing deforming mechanical structures.
Likewise, an Eulerian coordinate system is a natural choice for fluid variables. Also, the algorithm for
communicating between coordinate systems is straightforward to implement. To distinguish between 3
structure and fluid quantities, we use capital letters to indicate terms located on a structure and Iower
case letters for variables associated with the fluid. Additionally, superscripts indicate the location of
the velocities and force densities, either membrane or cortex, i.e. theltgriis the fluid velocity
located on the cortex arié,'l"D representsidhesion force per unit area on the cell membrane. A surface
force density on an immersed structure is spread onto the fluid coordinates as follows,

no [p104x0'q

f(x,t) = S(F) =/F F(s, 1)6(X — X(s, 1)) ds, (3)

wheres(X) is the 2D delta function. The notatighindicates spreading the force per unit area from the
Lagrangian (membrane) to force per unit volume in Eulerian (fluid) coordinates. The spreading operator

conserves force, i.e.
/ ﬁdsz/ S(F) dx. (4)
r Q

We interpolate from Eulerian to Lagrangian coordinates to obtain fluid quantities. For example, to
obtain the fluid velocity o, we use the interpolation operator,
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UM = 8 () = / (X, H)I(X — X(s, ) dX, (5)
Q

whereQ is the fluid domain.
Drag due to relative motion of the cortex is proportional to the difference between the cortical and
fluid velocities, i.e.

F§ = ¢ (US - Ue), (6)
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where¢ is the drag coefficient (g:m~2 s71). The drag coefficient is inversely proportional to the
permeability of the cortex. We will explore this relationship more in SectidBecause all the forces in

the system sum to zero, drag on the cortex is equal and opposite to forces exerted on the fluid. The drag
force density spread onto the Eulerian coordinates is denoted

fo = —Sc(FS). @)

Thecortex is modelled as a linear elastic material. At rest, it is under tension from actomyosin con-
tractility. The cortex also experiences tension proportional to the amount it is stretched. The constitutive
equation is given by,

Tc(s,t):yc+kc(% - ) ®)
0s
whereyc (pN/um) represents resting tension akgl (oN/um) is the cortical stiffness coefficient. The
elastic modulusc is equal tokc/ h, whereh is the thickness of the cortex. We chose a reference arc
length parameterization of the cortex so tmai(c/as| is 1 when the cortex it is in its initial circular
configuration.

A pure bilipid membrane cannot stretch. However, the cell membrane is a dynamic structure that
flows, unfurls and exocytoses new mater@h@rraset al., 2008;Sheetzt al., 2006). For simplicity, we
model the membrane as a linear elastic material. The implications of the membrane model are explored
further in Sectiort. The constitutive equation for membrane tension takes the same form as the equation
for cortical tension in (8), i.e.

Tm(s, t) = ym + ku (‘aXM 1), 9

whereym (pN/um) is membrane tension is a resting configuration &Qd(pN/um) is the stiffness

coefficient. The value ofa)ZM/as| is 1 when the membrane it is in its initial circular configuration

because of the curve parameterization. The model parameters are further discussed it Section
The force densmeEc and FM generatedy membrane and cortical tension are given by

> 0
F= —(T7), (10)
wherethe vector tangent to the membrane or cortex is
8X/0s
7(s,t) = % (11)
|0X /05|

Adhesionforces keep the membrane and cortex attached. This is modelled by discrete elastic springs
connectingl to I¢ (Fig. 1) with a stiffness coefficiertap (pN/um3) and a resting lengthyp («m),
given by,

o Yo — %c
FAD = —Kap (||XM — Xell - |AD) — (12)
[1Xm — Xcll

The adhesion force density at a point on the cortex is equal and opposite to the force density at a
corresponding point on the membrane,
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The spread adhesion force on the membrane in (1) is defined to be
o of em
fap = S(FAD)' (14)

3. Numerical formulation

The cell membrane and cortex are discretized on a moving Lagrangian grid parameterizdthbk
discretized boundary ha¢, points with initial uniform mesh spacings. Fluid quantities such as veloc-

ity and pressure are located on a fixed staggered Eulerian grid2jFBeriodic boundary conditions are
used on the fluid domain because the flow outside of the cell is relatively stationary. Communication be-
tween grids is handled by the immersed boundary metRedKin,1977). To approximate the integrals

in the spreading and interpolation operat@s¥), the delta function in one dimension is discretized as
follows,

1 TX .
5(X) ~ Sax(x) = [ Zax (10s(550)). ifIxi < 2Ax (15)
0, otherwise.

whereAx is the spatial step size. In two dimensions, we h&W ~ dax(X)day(y). The discretization
of the spreading operatoB)is

Np
P = As > R oax (4 — XP)aay(y — Y, (16)
k=1

and the discrete interpolation operatbj is given by,

ij
S
B— B— X —

X
L]
s xp B— X B

L2

py

FiG. 2. Staggered grid for fluid variables. The horizontal component of the velocity wettatored at filled squares. The vertical
componenb is stored at circles. Pressure is stored at the centre of the computational cell, denoted by crosses.
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At each time step, we solve for fluid velocity, pressure, external force densities, cortical velocity and
positions of the membrane and cortex. Because the system has a large number of unknowns, and it is
non-linear, we employ a fractional time stepping algorithm. The fractional time stepping that we use
involves lagging the force densities in time. Force densities at the current time step are computed using
the boundary configuration from the previous time step. Stokes equalipase(then solved. Finally,
immersed boundaries are updated with the appropriate fluid or cortical veIOC|ty

Recall that the surface force density balance on the corte is- FC +FS = 0. Combining the
previous equation with7), the explicit fluid velocity dependence from the drag force density term in
(1) is removed. The spread drag force then is

N

fo = Sc(Fp) + Sc(FE). (18)
Thefluid equation (1) becomes
p AU =V p+Su(Fm) + Su(FAD) + Sc(Fip) + Sc(FE) =0. (19)

Becausehe above equation resembles that of forced Stokes flow, it is straightforward to solve. The
update for the position of the cortex is
dXc
dt

Combiningthe cortical surface force density balan@ ith the definition of the drag surface force
density (6), we have

= Uec. (20)

N

Uec=UE+¢7 (FE+FD). (21)

In this way, the cortical surface force density balance is used to update the position of the cortex. Equa-
tions (19) and (20) are solved in the algorithm described below.
The time stepping algorithm to update the system ftBra: nAt to t"** is as follows:

1. Compute immersed boundary surface force densﬁigsﬁM and IEAD basedon current mem-
brane and cortex position. Derivatives are approximated with centred differences.
2. Spread the force densities onto nearby Eulerian points us@)g (

3. Solve Stokes equations with external forces densities. For simplicity, the cytoplasmic fluid is
taken to be equal to the extracellular fluid with viscogityWe take the divergence of9) and
solve a Poisson equation for the pressur®nce the pressure is computed, we soh8) for each
velocity componenti = (u, ). Approximate the derivatives in Laplacian terms with centred
differences, resulting in the standard five-point second-order Laplacian. Fast Fourier transforms
are used to solve the Poisson equations.

4. Interpolate the fluid velocity to the membrane and cortex usiiy (
5. Update the boundary positions with the appropriate velocities. The membrane update is

XML — X0 4+ AtS (UMY = X5 + At (22)

Thecortical update is

X2 = X2 + At (5 (PO + FREY) + ¢ (*““)) . (23)
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4. Computational experiments

In this section, we begin by discussing the model parameters and the set-up of the computational
experiments. Membrane and cortical elastic parameters are varied to determine their effect on steady
state bleb size and shape. We then quantify bleb formation time and use this value to investigate the
effects of varying cytoplasmic viscosity and drag over several orders of magnitude. We relate the drag
coefficient in our model to permeability of the cortex and use this value to estimate the volume fraction
of the cortex.

4.1 Parameters and simulation

A summary of model parameters from experimental data is listed in ThblEhe parameters for
membrane and cortical tension are consistent with other stu@lesriaset al, 2008). Note that mea-
surements of viscosity and bleb formation time vary over several orders of magnitude. The cytoplasm
is a complex material consisting of liquid cytosol, cytoskeleton, organelles and proteins. Experimental
values of viscosity depend on the assumed cytoplasmic model. For example, an effective viscosity is a
bulk measurement based on the viscosity of the liquid cytosol and cytoskeleton. However, in a poroelas-
tic gel cytoplasmic model, the viscosity of the liquid cytosol without the cytoskeleton is reported, and
this value is typically lower than an effective cytoplasmic viscosithdrraset al., 2008;Kerenet al,
2009). Later in this section, we vary the viscosity to determine the effect on bleb formation time.

The cortex/c andmembranely, areinitially circles parameterized by arc length in a reference
configuration:Ic = rc(cos6/rc), sin@s/rc)) for0 < s < 2zrc and iy = rpm(cos6/rv), sin@s/rm))
for 0 < s < 2xry. The grid step sizé\x used for most of the simulations in the following sections is
0.46875um (see Tabld). The distance between the membrane and cortex was chosen to be small but
above grid scaling. We use the value of 0.93i#B. This value is equal to&x for the grid size listed in
Table1 where most of the results in this section are computed on.

TABLE 1 Modelparameters and soues
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Symbol Quantity Value Source

v Cellradius 10 um Tinevezet al. (2009)

M Membranesurface tension 40 pNMm Tinevezet al. (2009)

km Membranestiffness coefficient 4 pN/m

rc Cortex radius 9.0625um

yC Corticaltension 250 pN/um Tinevezet al. (2009)

kc Corticalstiffness coefficient 100 piMm Tinevezet al. (2009)
Charraset al. (2005)

Kap Adhesionstiffness coefficient 267 pm®

|AD 0.001,um

u Cytosolicviscosity 1072-10P Kreis et al. (1982)
Wirtz (2009)

& Drag coefficient 10%-10t g um=2s7t

— Blebformation time 5-30s Charras & Palucl{2008)
Tinevezet al. (2009)

L Fluid computational domain size

AX Fluid grid step size L/64

As Initial structure grid step size 2m\x/(4L)
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FiG. 3. Ableb is initiated by removing membrane—cortex adhesion in a small region. The diameter of the bleb hole ig:alout 2

At equilibrium, the cortical velocity and fluid velocity are both zero, and the membrane and cortex
are stationary. From (21), adhesive force per unit area balances cortical force per unit area.Zligking (
in the normal direction to the cortex yields

°C . £C o rc

FAD-n—|—FC~n=kAD(rM—rC—IAD)—E=O. (24)
Substituting in the values fagy, rc, yc and the adhesion resting lendgly = 0.001 zm, we obtain the
stiffness coefficient for the adhesion force dendifyy, = 267 pNju m? from (24).

Before blebbing is initiated, the system is in equilibrium, and there is no fluid flow. Cortical tension
due to actomyosin contractility is the dominant contributor in generating intracellular pressure. Forces
from cortical tension are transmitted to the membrane through adhesion. Membrane—cortex adhesive
forces balance forces from cortical contraction. Because the membrane is impermeable, forces from
adhesion, membrane tension and cortical tension are balanced by internal pressure.

Blebbing is initiated by removing membrane—cortex adhesion in a small region as shown3n Fig.

We chose the region to be fromr /32 < 0 < 7 /32, corresponding to a bleb hole diameter of about
2 um.

Results from a simulation are shown in Fij.Model parameters used in the simulation are listed
in Table 1. The drag coefficient was set to 11;@n‘2 s~! and the viscosity was set to 100 times
the viscosity of water (1 P). After the adhesion is removed, forces from cortical tension are no longer
transmitted to the membrane in a small region. As a result, pressure is reduced in a small area near the
site of removed adhesion. This causes the cytoplasm to flow, expanding the membrane. Because the
membrane is assumed to be a linear elastic material in our model, the bleb reaches a maximum steady
state size when forces due to membrane elasticity balance the intracellular pressure. The process results
in a new steady state membrane and cortex configuration (final time value #) Fighe membrane and
cortex stiffness coefficients play a large role in bleb size, which is investigated in the next section.

4.2 Effects of membrane and cortical elasticity on bleb size

Experimental values of the elastic modulus of the cell coEgexhave been reported to range from 34 Pa

for alveolar epithelial cellsl@@urentet al., 2002) to 2000 Pa for filamin-deficient M2 cellSijarraset al.,,

2005). Taking the cortical thickness to be @.h (Tinevezet al, 2009), the cortical stiffness coefficient

kc is equal to the elastic modulus times the cortical thickness and ranges from 3 to 206 pNiere

is no experimental value for the effective elastic modulus of the membrane that takes into account
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FIG. 4. Colour field indicating pressure (Pa) with= 1 P and? = 11 g,um_2 s~1. Note that the initial pressure is lower across
the cortex near the bleb nucleation site. The grid size used was%

membrane unfurling, flow and exocytosis. Therefore, we simulated our model over a range of cortical
elastic moduli and membrane stiffness coefficients to understand their contribution to bleb shape ands.
expansion dynamics.

To quantify bleb size, we first measure cell width, which is defined to be the horizontal distance
from the leftmost membrane point to the rightmost membrane point §fid-he initial cell diameter
of 20 um is then subtracted from the cell width to obtain bleb size. It should be noted that the leftmost
membrane point moves less than 1% during the simulations presented in this section.

Steady state bleb size as a function of membrane stiffness coefficient and cortical elastic modulus
is listed in Table2. Fluid viscosity was set ta = 10 P and drag wag = 11 g um~2 s~L. Ad-
ditional parameters are listed in Tallle The membrane did not achieve a steady state configuration
for the (kw, Ec) pairs of (2, 10), 2, 10*%) and (2, 10°). For these value pairs, intracellular pressure
is above the threshold where membrane tension can resist bleb exparis®retet al,, 2009). The
steady state membrane configuration near the bleb is shown if.Ffghe cortex is relatively soft, e.g.
whenEc = 10 pNju m?, the bleb is relatively broad and does not achieve the circular shape observed
experimentally. Above the value &f; = 6 pN/um, bleb size is about km. Thus, we chosky = 4
pN/um andEc = 1000 pN/zm? to obtain a bleb size of aboutdm with a circular morphology.
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FiG. 5. Cell width is defined to be the distance from the leftmost point on the membrane to the rightmost point. This value is
subtracted from the initial cell diameter of 20n to give a measurement of bleb size. Bleb size reaches a steady state value that
is used to measure bleb formation time.

TABLE 2 Bleb size in micrometre as a function of cortical elastic modulys € kc/h pN/um?
(h = cortical thickness) and membrane stiffness coefficigrmiM/um. Bold numbers indicate the values
used for the remainder of thmanuscript

Cortical elastic modulus (plm?)
Membrane stiffness coefficient (phh?) 100  10'° 107 10%° 10° 10°° 10t

2 — — — 2.3 1.8 1.6 15
4 1.8 1.6 1.4 13 12 1.1 1.1
6 11 11 11 1.0 1.0 1.0 0.9
8 1.0 0.9 0.9 0.9 0.9 0.9 0.9
10 0.9 0.9 0.9 0.9 0.8 0.8 0.8

4.3 Experiments on cytoplasmic viscosity and cortical drag

In this subsection, we present computational experiments to determine the relative roles of cytoplasmic
viscosity and cortical drag on the dynamics of bleb formation. As previously mentioned, the viscosity
of the cytoplasm can be interpreted differently depending on the underlying cytoplasmic model. In our
model, the cytoplasm is modelled as a Newtonian fluid, and we interpret cytoplasmic viscosity to be
a bulk effective viscosity. Experimental measurements for the effective viscosity of the cytoplasm vary
over several orders of magnitude, ranging from 1 to 1000 times the viscosity of Watés €t al.,1982;
Mastroet al, 1984;Wirtz, 2009). Cortical drag corresponds to permeability of the cortex. We explore
this connection in detail in Sectigh4. The bleb formation timescale in our model is determined by the
cortical drag coefficient and cytoplasmic viscosity. By analysing the viscosity—drag parameter space, we
determine their relative roles in setting this timescale and identify the values of viscosity and drag that
match experimentally measured bleb formation times.
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We begin by quantifying the relative contribution of viscous and drag forces from the simulation
shown in Fig.4. We computed the ratio of the max norm of the viscous force depgity to the max
norm of the drag force densitﬁ;. Figure7 shows the norm of the viscous force density divided by
the drag force density over time. Initially, the drag force density is about 30 times the viscous force
density, then levels off at 200 times the viscous force density. Thus, we conclude drag forces dominate
throughout this simulation.

Before a thorough exploration of the viscosity—drag parameter space, we define how we quantify
bleb formation time. The steady state shape is independent of the viscosity and drag and is determined
only by the cortex and membrane stiffnesses. The viscosity and drag determine the dynamics of the
approach to steady state. Fig@ehows the time course of bleb size, as defined in Sedianfor
several viscosity values with the drag coefficient set to Quing2 s~*. We define bleb formation time
as the amount of time it takes for the bleb size to reach 90% of its steady state value.

To determine the relative roles of drag and viscosity on bleb formation, we simulated our model
for viscosities from 0.1 to 1000 P and drag coefficients from?1® 10 gum~2 s~. For each(x, &)

d

ky =4 pN/pm, Ec = 10 pN/pm?

ky =2 pN/um, Eg = 10%5 pN/um?

lins = 4 pN/pum, Ec = 10° pN/pm?

ky =4 pN/pm, Ec = 10* pN/pum?

FIG. 6. Steady state membrane configuration for several values of membrane stiffness coefficients and cortical elastic moduli.
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FiG. 7. Maximum norm of the viscous force density divided by the drag force density over time. Data are taken from the simulation
in Fig. 4. Drag forces dominate viscous forces.
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FiG. 8. Time course of bleb size, as described in Seati@n for different viscosities and drag coefficiént 0.1 g ym_z sL

Bleb size approaches the steady state value of:inandicated by the dotted line.
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FIG. 9. The colour field shows bleb formation times in seconds for different viscosity (P) and drag coefficient vahueéz(g
s_l). The solid contours indicate bleb formation times of 1, 5, 10, 20 and 30 s. The mesh was computed with cubic interpolation
of the original data that consisted of 20 evenly spaged) points from(10~1, 1072) to (102, 10).

pair, we measured the time when bleb size reached 90% of the steady state bleb sizerf Tt
results are shown in Fi@. Reported bleb formation times range from 5 to 3@k4rras & Paluch,
2008;Tinevezet al.,2009). Taking the value of cytoplasmic viscosity to be 0.1-1 P (10-100 times more
viscous than water), the drag coefficient must be larger thanuing?® s™* to obtain experimentally
measured bleb formation times. Additionally, Figshows two regimes. For large viscosity and small
drag coefficient values, bleb formation time depends only on cytoplasmic viscosity. For small viscosity
and large drag coefficient values, cortical drag sets the timescale.

We verified our results with a convergence study on three grid refinements. The number of grid
points on the three levels waéx N, with N = 64,128 and 256. We used = 10 P and: = 1 g um—2
s, Bleb formation time varied by 6% from thé = 64 to 128 refinement and by 2% froh = 128
to 256 refinement. Our results are consistent with first-order convergence.
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4.4 Interpretation of results

Another way to interpret the drag coefficient is to relate it to the permeability of the cortex. Flow through
a porous medium is described by Darcy’s |dBeér,1972)

k
Up:%a (25)

whereUp (um/s)is the porous slip velocity,d] (9 um~1s7?) is the pressure jumpk (um?) is the
permeability of the material aral(xm) is the thickness of the material. In our model, the force density
balance on the cortex is
¢ (Oc _ og) = FC+FS,. (26)
Theporous slip velocity is
Up = (Uc —UE) i = Fo/, (27)
whereF, is the normal component of the cortical force density. Fr@®) @nd (27), the expression for
the permeability of the cortex is
_upahky
¢lpl

The jump in the normal fluid stress across the cortex generates a jump in the pressye of [
FnloXc/0s| (Kim & Peskin 2006; Stockie,2009). Therefore, the permeability in terms of our model
parameters is

(28)

ua

=— 29
¢1oXc/os| @9

We take]d X¢/0s| to be its initial value of 1. Cortical thicknessis 0.1 zm (Tinevezet al.,2009). We let
the value of cytoplasmic viscosity be 0.1 P Charraset al.,2008). In our computational experiments,
the drag coefficient varies from 102 to 10 g um?s~* (Table1 and Fig.9). Plugging the values of
|6Xc/dsl, a, 1 andthe range of: into (29), the resulting permeability varies from 107 to 1072
ymz. We found large drag values match experimental bleb formation timeg fer0.1 P. Using the
value of& = 10 gum? s~2, the corresponding permeability estimate is on the ordérsf10~" yxm?.
Our prediction for the permeability of the cortex is in line with experimentally measured biological
materials. For example, the permeability of water through collagen fibres with radidgft0and a
volume fraction of 0.215 is % 10~/ xm? (Jacksor& James1986).

Cytoplasmic permeability has been estimated in other contexts. In the lamellipodium of a kerato-
cyte, permeability was estimated to be‘iQ: m? in Kerenet al. (2009). The cytoplasmic permeability
throughout the cell was estimated at fQum? in Charrasetal. (2008). Both these estimates assume

the intracellular cytoplasm is a porous medium, whereas in our model, all drag is located at the cortex.

This might explain why the permeability estimategdharraset al. (2008) andKerenet al. (2009) are
larger.

We also calculate the volume fraction in the cortex using our estimate for permeability. An analytic
formula for the permeability of rods randomly oriented in three dimensions was givepiégiman &
Goren(1968),

4 10Vk Ki(4/vK)

1
67373 Ke/VR) )
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whereg is the volume fraction} is the radius of the fibres ari¢y andK; aremodified Bessel functions
of the zeroth and first kind, respectively. It should be noted that this formula is consistent with the
experimentally measured collagen permeability and volume fraction data mentioned in the previous
paragraph. In our case, we takéo be the radius of an actin bundle, which we estimate to bé 10n.
Takingk = 1077 um?, we obtain the volume fractiop = 0.7 from (30). Equation30) is highly
sensitive to the choice of. If we takeA to be the radius of an actin monomer, about3@m, then the
volume fraction drops t¢ = 0.39. We estimate the volume fraction of the cortex to be a range from
0.4 to 0.7. This is the first estimate for the volume fraction of the cortex. The range of predicted cortical
volume fractions is high, but it is in agreement with other estimates. For example, the volume fraction of
cytoskeleton throughout the cell was estimated to be 0Gharraset al. (2008) and 0.5 in a keratocyte
lamellipodium (Kereret al.,2009).

Average pore size can be computed from volume fractioiChatterjeg2010), a formula relating
average pore sizg) to volume fractionp is presented for the case of a spatially uniform and randomly
oriented network of cylindrical fibres with radius

ry= %\/ge“ (erfd — Va)), (31)

wherea = In(1/(1— ¢)) and erf is the error function. Taking = 0.7 from the previous volume
fraction calculation, average pore size is about 1/3 times the fibre radius or 3 hes if02 xm.

Typical cortical pore sizes are reported from 20 to 200 nn€lrarraset al. (2006). These numbers

are based on images from scanning electron microscopy. The pore size appears to be comparable to
the fibre size in these images (Fig. 6@marraset al., 2006). One likely reason for our underestimate

of the average pore size is that we consider average pore size. Larger pores are easier to visualize and

quantify in the microscopy images. It is more difficult to obtain a mean pore size. Additionally, our low
estimate of pore size may result from the assumption that the drag force is localized to the cortex. If
the drag force inside the cell due to cytoskeleton and organelles is included, this may predict a higher
cortical permeability and a larger pore size. Internal cytoskeleton could be included in this modelling
framework, but such an extension is non-trivial and beyond the scope of the current work.

5. Discussion

We have presented a computational model of bleb formation that includes the cytoplasm, cell membrane,
cortex and adhesion between the membrane and cortex. A novel feature of our model is that the cortex
is treated as a porous elastic structure that moves with a separate velocity due to drag between the cortex
and cytoplasmic fluid. The role of the cortical elastic modulus and membrane stiffness coefficient on
bleb shape and steady state times was investigated. We measured bleb formation time over a range of
values in the drag—viscosity parameter space because the timescale of bleb formation is set by these
parameters in our model. We identified two regimes. Viscosity dominates the dynamics in one regime
and drag plays a significant role in the other. A typical value for cytoplasmic viscosity is 10 times the
viscosity of water (0.1 P)Gharraset al.,2008;Kerenet al.,2009). Using this value, we calculated the
permeability to be 10’ xm? anda range of volume fractions of the cortex from 0.4 to 0.7. These values
suggest that the cortex is tightly packed with a gap size about one third the size of the fibre radius.
Experimental evidence suggests that the gap size is larger and volume fraction is smaller. In our model,
intracellular drag is attributed to the cortex. Other factors such as the drag on the internal cytoskeleton
may contribute to bleb dynamics.
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The computational model presented here is a 2D model. Because the dynamics are determined by
flow through the cortex and membrane expansion, we do not expect that the time and bleb size scales
would substantially change from those computed by a 3D model. In our simulations, blebbing was
initiated by removing adhesion between the membrane and the cortex. If blebbing was initiated by
ablating the cortex, there may be significant differences 2D and 3D models. The elastic stresses near a cut
in a circular membrane may be very different from the stresses around a hole in a spherical membrane.
However, a 2D model facilitates rapid parameter studies that would be be computationally expensive in a
3D model. The data from this study give us a starting point for more detailed quantitative computational
experiments with a 3D model.

Experiments show that secondary blebs are slightly smaller than the primaryTblebgzet al.,

2009). In our model, multiple blebs are all the same size (data not shown). This is because not muchg
pressure is relieved by bleb expansion. It is not known what relieves intracellular pressure. One hypoth- g
esis is that internal compression of the cytoskeleton plays a significanflinkvézet al.,2009). Our

model can be extended to quantify the contributions of cytoskeletal compressibility and internal drag on
bleb dynamics by treating the material on the inside of the cell as poroelastic. This will be the subject -
of future work.

Our approach to incorporating porosity into the immersed boundary method is different from pre-
vious work. InKim & Peskin (2006) andStockie(2009), the porous slip velocity is proportional to the
immersed boundary force density in the normal direction. In our model, we have two force density bal-
ances. One from the fluid equation and one on the cell cortex. The force density balance on the corte
determines the porous slip velocity, which allows for slip in the tangential direction.

The model presented here is a first step towards understanding the dynamics of blebbing, which is
particularly important for understanding 3D cell motility. An advantage of using the immersed boundary
method is that it is straightforward to add additional components to the model, such as cytoplasmic
elasticity and sub-cellular structures. The framework of our model allows for future explorations on the
role of these structures in blebbing and in intracellular pressure propagation.
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